首页> 外文OA文献 >Re-scale AdaBoost for Attack Detection in Collaborative Filtering Recommender Systems
【2h】

Re-scale AdaBoost for Attack Detection in Collaborative Filtering Recommender Systems

机译:在协同过滤中重新调整adaBoost攻击检测   推荐系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Collaborative filtering recommender systems (CFRSs) are the key components ofsuccessful e-commerce systems. Actually, CFRSs are highly vulnerable to attackssince its openness. However, since attack size is far smaller than that ofgenuine users, conventional supervised learning based detection methods couldbe too "dull" to handle such imbalanced classification. In this paper, weimprove detection performance from following two aspects. First, we extractwell-designed features from user profiles based on the statistical propertiesof the diverse attack models, making hard classification task becomes easier toperform. Then, refer to the general idea of re-scale Boosting (RBoosting) andAdaBoost, we apply a variant of AdaBoost, called the re-scale AdaBoost(RAdaBoost) as our detection method based on extracted features. RAdaBoost iscomparable to the optimal Boosting-type algorithm and can effectively improvethe performance in some hard scenarios. Finally, a series of experiments on theMovieLens-100K data set are conducted to demonstrate the outperformance ofRAdaBoost comparing with some classical techniques such as SVM, kNN andAdaBoost.
机译:协同过滤推荐系统(CFRS)是成功的电子商务系统的关键组件。实际上,由于CFRS的开放性,因此极易受到攻击。但是,由于攻击规模远小于真正的用户,因此传统的基于监督学习的检测方法可能过于“呆板”,无法处理这种不平衡的分类。本文从以下两个方面提高检测性能。首先,我们基于各种攻击模型的统计属性从用户配置文件中提取设计良好的功能,从而使硬分类任务变得更容易执行。然后,参考重新缩放Boosting(RBoosting)和AdaBoost的一般思路,我们应用AdaBoost的变体,称为重新缩放AdaBoost(RAdaBoost)作为我们基于提取特征的检测方法。 RAdaBoost与最佳的Boosting型算法相比,可以在某些困难的情况下有效地提高性能。最后,在MovieLens-100K数据集上进行了一系列实验,以证明RAdaBoost与一些经典技术(例如SVM,kNN和AdaBoost)相比的出色表现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号